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A general procedure is described for the calculation of n-beam Borrmann diffraction effects. These in- 
clude the coordinates of points on the sheets of the dispersion surface, absorption coefficients, excitation 
of modes of propagation and transmitted intensities. The procedure has been used to calculate four-beam 
effects involved in the simultaneous transmission of the 000, 1il, 3ii  and 202 reflections through essen- 
tially perfect germanium crystals. Emphasis has been placed on calculations which illustrate the transi- 
tions from four-beam interactions to one or two-beam cases. The minimum value of the absorption 
coefficients for Cu K~x at the exact four-beam setting is 6.2 cm-1, compared with the 'normal' coefficient 
of 352 cm- 1. The effects of several relevant variables on transmitted intensities and on the effective absorp- 
tion coefficients, are described. High-resolution divergent-beam photographs, utilizing a microbeam X- 
ray source and an evacuated path of 160 cm from crystal to film, reveal a number of previously unreported 
anomalies in the transmitted intensities. The calculated values of the corresponding reflection intensities 
agree well with these observations. 

1. Introduction 

When an unpolarized, monochromatic beam of X- 
rays is incident on the surface of a perfect crystal at 
or near the exact angle for simultaneous n-beam dif- 
fraction through the crystal, 2n solutions of the com- 
plex dynamical diffraction equations exist for each 
angle of incidence. These give rise to 2n normal modes 
of propagation of X-rays. The real parts of the solu- 
tions determine the locations of 2n tiepoints, one on 
each sheet of the dispersion surface. The imaginary 
parts yield 2n absorption coefficients. At the incident 
surface, the boundary conditions determine the alloca- 
tion of incident amplitude to each mode of propaga- 
tion; at the exit surface they determine the distribu- 
tion of the transmitted intensities among the diffracted 
beams. 

The solution of the dynamical equations and the 
calculation of dynamical diffraction effects present 
formidable difficulties. Because of these difficulties, 
only a very few investigations in this area were under- 
taken in the years following the publication of Ewald's 
(1917) classic paper on the dynamical theory of X-ray 
diffraction. Interest in dynamical diffraction rose sharp- 
ly following the discovery of the Borrmann effect 
(Borrmann, 1941). For many years, however, investiga- 
tions of the effect were limited almost entirely to two- 
beam Bragg reflection or Laue transmission cases. 

The situation changed following Borrmann & 
Hartwig's (1965) observation of a striking additional 
enhancement of the 111 reflection, anomalously 
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transmitted through germanium, when the 11] reflec- 
tion is brought to diffracting position simultaneously 
with 111. Within a few years the results of large num- 
bers of theoretical and experimental investigations of 
n-beam cases were published. These include: Saccocio 
& Zajac (1965), Hildebrandt (1967), Joko & Fukuhara 
(1967), Ewald & Heno (1968), Heno & Ewald (1968), 
Penning (1968), Uebach & Hildebrandt (1969), Balter, 
Feldman & Post (1971), Feldman & Post (1972), 
Huang & Post (1973), Hildebrandt (1973), Huang, 
Tillinger & Post (1973), Uebach (1973), Katsnelson, 
Iveronova, Borodina & Runova (1975). 

Because of the complexity of the calculations, most 
of the above have been limited to n-beam effects which 
take place when the crystal is set at the exact angle for 
n-beam diffraction. The necessary calculations are then 
greatly simplified. 

Diffraction limited to the exact n-beam setting im- 
plies a non-divergent incident beam. Real incident 
beams always possess finite divergence, and excite ex- 
tensive portions of the dispersion surface of a stationary 
crystal. Transmitted 'peak' intensities are therefore ac- 
tually integrated over finite angular ranges; the latter 
are determined mainly by the angular acceptance range 
of the crystal. Similarly, measured absorption coeffi- 
cients represent values averaged over ranges of angles 
and, in many cases, over several modes of propagation. 
Analytic methods are not yet available for the calcula- 
tion of such 'integrated' intensities, or averaged ab- 
sorption coefficients, from data calculated for the n- 
beam point alone. To make possible meaningful com- 
parisons with experimental results, it is therefore 
necessary that calculations of these and similar quan- 
tities be repeated for many crystal settings. These dif- 
ficulties are compounded by the rapid variation of cal- 
culated values with small changes of crystal setting 
near the n-beam point. 
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We have written computer programs, based on von 
Laue's (1960) modifications of the plane wave theory 
of Ewald (1917), for the calculation of diffraction ef- 
fects for 'n' coplanar reciprocal lattice points, for any 
value of 'n', and for wide ranges of crystal settings. 
To illustrate the above we have selected a four-beam 
case involving the simultaneous transmission of X--rays 
through germanium crystals by the 000, 111, 311 and 
202 reflections. This case has been discussed by 
Katsnelson, Kissin & Polyakova (1969)and Katnelson, 
Borodina & Kissin (1970), with somewhat confusing 
results. These authors treated it initially as a three- 
beam case involving only the relatively strong 111 and 
202 reflections. In a later publication, they recognized 
the four-beam nature of the interaction, but again did 
not include the 311 contributions in their calculations, 
stating that the weak 311 reflection could not signi- 
ficantly affect the n-beam calculations (Katsnelson, 
Iveronova, Borodina & Runova, 1972). In a more re- 
cent paper, (Katsnelson et al., 1975), the results of some 
calculations based on four-beams were reported, but 
these differ significantly from those previously re- 
ported by the authors and from those we present 
below. 

It should be clear that the 'weakness' of the two- 
beam intensity of a reflection does not necessarily im- 
ply that its contribution to an n-beam interaction 
(n > 2) is negligible. This point is illustrated well in the 
three-beam case involving 000, 111, and 111, (Borr- 
mann & Hartwig, 1965), to which we referred above. 
At the three-beam point, that interaction results in 
the reduction of the minimum absorption coefficient 
from its two-beam value of 107 cm-1, to less than 19 
cm- 1. This reduction is accompanied by a spectacular 
enhancement of the transmitted intensity. Dynamical 
diffraction effects are invariant to permutations of in- 
dices of reflections. In the case referred to, 002 serves 
to 'couple' the 111 and 1 l i  reflections. The case could 
equally well be described as the 111, 002 case, with 
1 l i  performing the coupling function. Obviously, the 
contributions of the 002 reflection to this three-beam 
interaction should not be ignored, even though its 
two-beam structure factor equals zero. Similar con- 
siderations apply to 311 in the four-beam case, as will 
be demonstrated below. 

In this paper we present an outline of n-beam theory 
and calculation procedures, results calculated for the 
four-beam case, and comparisons of the latter with 
experiment. 

II. Theory 
As pointed out by yon Laue (1960) the calculation of 
n-beam dynamical X-ray effects involves the solution 
of Maxwell's equations for a medium with a periodic 
complex dielectric constant. A sum of plane waves in 
the form of a Bloch function, which satisfies Bragg's 
law and Maxwell's equations, is taken as the assumed 
solution for the crystal wave field" 

D = Z DH exp [ - 2rci(Kn. r -  vt)] (1) 
H 

D = e x p  [ -  2ni(Ko. r-vt)] ~ DH exp (-- 2niH. r). (2) 
H 

Kn is the wave vector inside the crystal, directed 
towards the reciprocal lattice point H; DR is the cor- 
responding electric displacement vector, transverse to 
Kn.  

A set of mutually orthogonal unit vectors RH, bn, ~n 
is defined as follows: all ~ vectors lie in or parallel 
to the plane of the 000, 111, 31--1, 202 reciprocal lattice 
points; also, K,H/iKn] = bn x %.  

The solutions of Maxwell's equations lead to a set 
of linear, homogeneous equations for the wave field 
due to all the reciprocal lattice points ( O , H , P . . . )  in 
diffracting positions, as follows (James, 1963): 

where 

2 8 H D H  = Z (P(H - P)Dp(H) (3) 
P 

KH" KH 1 , (4) 
2en = k2 

e 2 )2  

(PH= mc 2 nV Fn ' (5) 

Dp(n) is the vector component of Dp which is per- 
pendicular to KH. k is the vacuum wave vector and V 
is the volume of the unit cell. 

Equation (3) yields 'n' vector equations in an n- 
beam case. Each DH can be decomposed into two 

Table 1. The eight scalar equations for a four-beam case 

bo, ~o, ~n, ~tn . . . .  are unit vectors in the directions of Dt~, D~, D~, D ]  . . . . .  

~ o -  2eo CPobo . ~o q~nCSo . ~SH q3nCSo . kH CPrCSO . be 

qO0~O, bO gO0 --2eO ~On4to. bn cPn~o. ~n ~orito. be 

~on~n . bo ¢Po- 2en (POblt • ~n (P P-It@It . @p 

~° n~tn . •o q~ o - 2en ~O p - H ~  H • ~p 

~OpOv . bo 9 o - 2ep 

('PP~P" ~0 

q~v~v. ~So 

~Ov~v.~ 0 ~Ov~v.~ 0 ~Olt-V~V.b H ~OH-V~V.~ H p - v ~ v . b p  +, 

~°7,~o . ~P q~v~o . ~Sv 

~O~o . ~p ~°v% . bv 

~O p - n b n  . ~p CPv-ni~n . bv 

q~ P- nt~n • ~P q3v- n~H . @V 

q~ o~p. ~p q)v-pbp,  bv 

q~ o -- 2ep q~v - p~p . ~v 
~o o - 2ev 

q)v-v~v .  ~v q)otCv, hv 

v %  . ~ v  - 

v ~ o  . ~v 

v- n~z. kv 
v -  p b p .  i~v 
V - P ~ P  • ~V 

o~v.  ~v 

O--2en _ 

~OD~5 

~OD3 
~OD~ 
gOD~ 

• ~OD~ 
gOD.~ 
~OD~, 

JPD~,_ 

=o (6) 
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mutually orthogonal components, D~ and D}, to 
yield 2n scalar equations. For a four-beam case the 
eight scalar equations can be written as equation (6), 
shown in Table 1. The unknowns in (6) are the com- 
plex eigenvalues, en, and the eigenvectors D~,D}, .  • • 
The real parts of the eigenvalues yield the positions 
of the tiepoints on the 2n sheets of the dispersion sur- 
face. The imaginary parts are proportional to the ab- 
sorption coefficients. 

The eigenvector solutions of (6) give the ratios of 
wave field amplitudes. The relative amounts of in- 
cident energy assigned to each mode of propagation 
are defined as follows: 

ID~(j)I z + IDS(/)I ~ 
Exn(j) = i~l~ ~ ~E--~ ~ , (7) 

Exn(i) refers to the excitation of mode (j) in the beam 
directed to H. Eg and E~ refer to the incident vacuum 
electric field components along the mutually perpen- 
dicular ~r and ~ directions. For the four-beam case 
under consideration, the relations between the po- 
larization vectors can be expressed in terms of 03~ 
and an angle, 0, as follows: 

[K - iKnl = k(1 + e~ - ien) (11) 

K ~ = k ~ .  (12) 

From (9) we see that the intensity of reflection H 
equals: 

In(t)= I~ Dn(j)[exp - 2hiKe(j). r)] 
J 

x [ e x p - 2 n K ~ ( j ) . r ] l  2 . (13) 

III. Experimental  

Our experimental procedures have been described 
previously (Huang & Post, 1973). A schematic dia- 
gram of the experimental arrangement is shown in 
Fig. 1. A divergent, unfiltered microbeam X-ray 
source and a speciment-to-film distance of 160 cm were 
used to record transmitted patterns with high resolu- 
tion. The copper target had an effective size of 100 x 100 
/,(m at a 4 ° take-off angle. The specimens were disloca- 
tion-free, parallel-sided germanium platelets, cut nor- 
mal to [121]. The (000), (1]`1), (3i]) and (202) recip- 

~o 

eo 
~o 
eo 
en  
eo 
eo 
~o 
~ro 
~ro 

• ~o  = ~to. 

~o  = ~ n  

e v  = e n  

~v  = ~o 

i~v = e n  

~tn = ~ v  

~ v  = ~n  

~O = ~H" ~H = ~H" ~H = ~P" ~P = ~P" ~P = ~V" ~V = ~V" ~V = 1 

~n  = b e .  ~e = bv  . ~v  = ~n  . ~e  = b n  . ~e  = i~O • bv  = ~ 0 .  ~v  = 0 
0V = sin 2 0(3a--f) cos 2 0(3 x---f) cos 
~rp = sin 2 0(3~) + cos 2 0(3~) cos ¢ 
be = sin 2 0(3a-r)-cos 2 0(an-) 

~v = eP. ~0 = 0v. ~n = COS 0(3a--f) sin 
i~o = i)e. i~v = bv. ~n = -- COS 0(3Tn sin ~, 
~v = - c o s  ~, 

~v =cos 0 
~e= - 1 

(8) 

where 0, H, P and V represent the 000, l i l ,  3 i i  and 
202 reciprocal lattice points. ~ equals tan-1 [d*(1T1)/ 

Since the wave solutions must satisfy the boundary 
conditions on the incident and exit surfaces of the crys- 
tal, the intensities of the transmitted beams can be cal- 
culated. For a crystal of thickness t the intensity of 
the diffracted beam, IH (t), at the exit surface is 

I n ( t ) =  I~. Dn(j)  exp [ -  2niKn(] ) .  r]l 2 (9) 
J 

where the summation is over the j modes of propaga- 
tion Dn(])= ~rD ~ n(J)+ ~D}(j); ~ and ~ are unit vectors, 
previously defined; and, Kn(j)=Kn(j)-iK~(j). The 
latter two terms refer to the real and imaginary parts, 
respectively, of the jth mode of propagation of Kn, 
the propagation vector• r is directed into the crystal 
in the direction of the surface normal. At the exit sur- 
face the magnitude of r equals the crystal thickness. 

To a good approximation e~10  -5, and from (4): 

rocal lattice points lie in a plane parallel to the crystal 
surface. All four points may be brought to their dif- 
fracting positions conveniently by rotating the crystal 
about [121] to bring (3]`1) to the horizontal plane, 
and thentil t ing the crystal about the vertical axis to 
bring (311) to the surface of the Ewald sphere. The 

I O O x ~  

Forward Diffracted Beam 
Source Crystal Film 

' + ,I 
I< 7cm Ira2 m 

IKnl = k(1 +eH) (10) Fig. 1. Schematic drawing of the experimental arrangement. 
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crystal is aligned exactly for four-beam diffraction when 
the inward normal from the point where the incident 
beam strikes the crystal surface passes through the 
Laue point, L, (Fig. 2); L is equidistant, at a distance 
1//],(vacuum) , from the reciprocal lattice points in their 
exact diffracting position. 

In the lower part of Fig. 2 we show the plane of the 
four reciprocal lattice points. It is parallel to the sur- 
face of the crystal. The plane in the upper portion of 
the figure illustrates schematically the directions of the 
intersections of reflecting planes with a sheet of the 
dispersion surface. The intersections are referred to 
below as 'reflection lines'. 

A transition from the four-beam case to one in- 
volving only two beams can be brought about by ro- 
tating the crystal about one of the three diffraction 
vectors shown in the lower part of Fig. 2. If, for example, 
the [3 i i ]  vector is horizontal, a change of the inclina- 
tion of the incident beam which causes the point at 
which it impinges on the crystal surface to move in a 
vertical direction, is equivalent to a rotation of the 
crystal about [3]-[]. The locus of the points of inter- 
section of the incident beam with the crystal surface. 
coincides with the 311 reflection line, i.e. with the line 
M'M. A transition from four beams to one occurs when 
the intersection of the incident beam with the surface 
moves in any direction other than along one of the 
reflection lines. 

The use of a divergent incident beam eliminates the 
need for highly precise crystal alignment. The semi- 
apical angle of the cone of radiation incident on the 
crystal is about 4 ° , and photographs of the forward 
diffracted region will display the traces of the l i l ,  311 
and 207. reflections, and their intersections, provided 
the crystal misalignment does not exceed 4 °. 

CRYSTAL SURFACE 

REFLECTION LINES M N 

| 

I "" ] 'REFLECTION 
;CLE' 

o o - ~  3ff 

Fig. 2. The 'reflection circle' and 'reflection lines'. 

The real and imaginary parts of the structure factors 
used in our calculations are listed in Table 2. 

Table 2. Structure factors of germanium 
The real parts were based on data listed in International Tables for 
X-ray Crystallography (1974); the imaginary parts were estimated 
from results published by Okkerse (1962). Corrections for thermal 

motion were applied using B = 0-556/~2 (Okkerse, 1962). 

hkl F'(hkl) F"(hkl) 
000 245.60 7.345 
111 145.62 5.107 
311 113.54 4.909 
202 173.78 7.045 

IV. Calculated results 

Except where otherwise noted, the results listed in this 
section have been evaluated along reflection lines as 
functions of A qg, the displacement from the four-beam 
point, at the following settings: Aq)= 0 to 24 seconds, 
at intervals of one second of arc, and at Aq)= 32, 64, 
128 and 256 seconds. 

(a) The dispersion surface 
The intersections of the eight sheets of the dispersion 

surface with the planes formed by the line LC (Fig. 2) 
and each of the reflection lines, are shown in Fig. 3. 
The Laue point is at the origin. Ordinates are listed 
in cm-X. The distance from the Laue point to the 
origin of the reciprocal lattice equals 1/;to, i.e. about 
6"5 x 107 cm-1 for Cu Ks. The LC direction is ver- 
tical in Fig. 3. The traces of the two-beam reflection 
lines are horizontal. In the two-beam regions only 
four modes are excited; the traces of the correspond- 
ing sheets are marked by asterisks. 

The maximum value of A~0 in Fig. 3 is 16". In the 
202 and 111 plots the separations of sheets 1 and 4 
differ significantly from those of 5 and 8, on opposite 
sides of the four-beam point, at [A~o[ = 16". Evidently, 
in these cases the transition from four to two beams 
is not complete at that setting. The gradual approach 
to 'equilibrium' two-beam 202 conditions is illustrated 
in Table 3, in which we list distances between sheets 
of the dispersion surface at larger A~p. At large Aq), 
the separation of sheet 1 from 4 on one side of the four- 
beam point should be exactly equal to the correspond- 
ing separation of sheet 5 from 8 on the other side. 

The individual values listed under A and B in Table 
3 approach their asymptotic values very slowly; the 
averaged values, listed to the right, converge rapidly 
to an indicated separation of 1486 cm-1. This value 
may be checked by making use of the known propor- 
tionality between the separations of sheets in two- 
beam regions and the magnitudes of the structure fac- 
tors involved (Batterman & Cole, 1964), i.e. 

re2 
SH COS 0 '=  ~ [PHI lEvi. (14) 



94 SIMULTANEOUS FOUR-BEAM BORRMANN DIFFRACTION 

re is the classical radius of the electron: 2.818 x 10-~3 
cm; V is the volume of the unit cell; Sn is the separa- 
tion of sheets, in cm-Z; IPnl is the magnitude of the 
polarization factor; it equals unity for the two outer 
sheets (1 and 4, and 5 and 8), and cos 20 for the inner 
sheets; 0' is the angle by which the plane of the recip- 
rocal lattice points must be rotated from a position 
tangent to the Ewald sphere to bring the points to 
their simultaneous diffracting position. It equals the 
angle between LC (Fig. 2) and the line from L to one 
of the four reciprocal lattice points. For the four-beam 
case under study 0' equals 26.843 °, the Bragg angle for 
diffraction by (311). 

If we substitute the calculated value of 1486 cm-  
for So in (14), and take IPI-- 1, we obtain IFul = 173.77, 
in good agreement with the 173.78 initially assumed 
for our calculations. Similarly, the substitution of the 
calculated value of 1045 cm-  ~ for the separation of the 
two inner sheets, and using 0Bragg 20~- (22"6485°) to cal- 
culate the polarization factor, yields IF, I = 173.72. 

(b) Relative excitations 
The relative excitations of the modes of propaga- 

tion, calculated according to (7), are shown in Fig. 4. 
Closely spaced pairs of lines have been combined in 
some cases to minimize confusion. 

Examination of Figs. 3 and 4 indicates that the ar- 
rangements of sheets of the dispersion surface are of 
two types. Along l i l  and 202, on one side of the Acp = 0  
setting, one set of four sheets is excited in the two- 
beam region; on the other side it is replaced by an- 
other set of four. Near the four-beam point (i.e. along 
A q0 = 0), both sets are excited to provide the eight modes 
needed for four-beam cases. In the second arrange- 
ment, (along 311), modes 3,4,5 and 6 are excited on 
both sides of the four-beam point. Near A q~ = 0, four 
additional modes are excited (1 and 2, and 7 and 8). 
This arrangement shows almost perfect mirror sym- 
metry across A q~ = 0 [Figs. 3(c) and 4(c)]. 

Table 3. Separations of sheets along the 202 line 
(in cm-  1) 

A~ A B 
(seconds) lto 4 5to 8 (A +B)/2 

16 1803 1157 1480 
32 1659 1311 1485 
64 1575 1396 1485-5 

128 1530 1441 1485.5 
256 1509 1463 1486 

The difference between the two arrangements ap- 
pears to reflect the difference between the effects of 
rotation about [ l  i l]  or [202] from rotation about 
[3T1]. Rotation about either of the first two diffrac- 
tion vectors through A (p = 0 results in the simultaneous 
movement of two reciprocal lattice points either into 
or out of the Ewald sphere (see Fig. 2). A similar rota- 
tion about [3TI] causes the ( l i l )  and (202) reciprocal 
lattice points, which are symmetrically arranged about 
[311], to move in opposite directions through the 
sphere. 

The coordinates of the dispersion surface are deter- 
mined by the real parts of en, the 'resonance error', 
defined in (4). The overall resonance error should be 
almost independent of rotation through the four-beam 
point when the rotation axis is [3i-i]; it should change 
by large amounts, asymmetrically, when the crystal is 
rotated about either [111] or [20_2-]. 

The excitation curves along 111 and 202 vary ir- 
regularly near the four-beam point. The corresponding 
absorption curves are, however, symmetrical across 
A q~ =0, and it is clear that in those cases any asym- 
metry of the transmitted intensities must be due to 
the asymmetry of the corresponding excitations [see 
§ IV(d)]. 

(c) Absorption coefficients 
The absorption coefficients of the eight modes, along 

the three reflection lines, are shown in Fig. 5. At the 
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Fig. 3. Sections through the four-beam dispersion surface. 
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four-beam point, the minimum value is 6.2 cm-  l, com- 1ooo 

pared with the one-beam coefficient of 352 cm-1, or 600 
with the minimum two-beam values of 14.4, 107.3 and 200 
116"8 cm-z for 202, 111 and 3]-1 respectively. A con- 
venient check on the validity of these calculations is ---" 60 
based on the numerical equality that exists between ~ 40 
the sum of the eigenvalues and the trace of a matrix -~ 20 
(Noble, 1969). It follows that the sum of the imaginary 
eigenvalues of (6) [-E. d'(j)] should be constant and 

should equal 2rcR~0oJat all crystal settings. The latter 
is equal to the average macroscopic absorption coef- 
ficient, #o, (Zachariasen, 1945). 
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Fig. 4. Excitations of modes of propagation.  

(c) 
Fig. 5. Two and four-beam absorpt ion coefficients. 

Table 4. Average absorption coefficients of modes 
'active' in two-beam regions near a four-beam point 

(in cm-  1) 
Reflection line 

d ¢p (seconds) 1T 1 31--1 202 

128 336"9 349"8 332"1 
300 345-6 351-7 343"6 
600 348"9 352"0 347"8 

In two-beam regions only four modes are excited; 
the average of the four 'effective' coefficients should 
therefore also equal #o. Differences between the two, 
in regions distant from the n-beam point, indicate the 
persistence of the effects of the n-beam interaction. 
Some such differences are listed in Table 4. 

The data in Table 4 apply to regions of positive 
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A q). Discrepancies of opposite sign are found along 
reflection lines in the corresponding regions of nega- 
tive A q~. Similar effects occur in one-beam regions. The 
averages of the two effective absorption coefficients 
along a line perpendicular to 311 are only 318.9, 335.1 
and 342-9 cm -1 at Aq~= 150, 300 and 600 seconds. 
These long-range effects indicate the need for caution 
in interpreting the results of absorption measurements 
in perfect crystals, particularly when short-wavelength 
radiations are used. The number of n-beam interac- 
tions increases as the inverse cube of the wavelength 
and the difficulty of locating crystal settings free from 
such effects varies correspondingly. 

(d) Transmitted intensities 
The relative intensities (I/Io) of the diffracted beams 

have been calculated, using (13), for settings along each 
reflection line at angular intervals of one second of 
arc to Aq~ = 30". Results for thicknesses of 0.0025, 0"05 
and 0-1 cm are shown in Fig. 6. 

The 'forward diffracted' and 'transmitted reflected' 
beam intensities (defined in Fig. 1) oscillate widely 
in the thin crystal cases (t=0.0025 cm). In these, all 
modes may contribute to the diffracted intensities. The 
sum indicated by (13) involves positive, squared terms, 
as well as cross-terms which may be either positive or 
negative. In thin crystals the cross-terms are com- 
parable in magnitude to the squared terms: hence the 
oscillatory behavior. As the crystal thickness increases, 
the high absorption modes are preferentially attenu- 
ated; in most cases of moderately 'thick' crystals, only 
one or two modes make appreciable contributions to 
the intensities. The intensity curves become progres- 
sively smoother with increasing thickness as shown in 
Fig. 6. 

The following_intensity anomalies should be noted" 
along 311 and 111 the intensity at the four-beam point 

- -  
is strongly enhanced; enhancement is minor along 202; 
abrupt decreases in intensity occur along 202 and 111 
near the four-beam point. These will be compared 
with experimental results. 

(e) Weak reflections 
In the Introduction we referred to n-beam calcula- 

tions from which the contributions of 'weak reflec- 
tions' had been omitted. Such omissions are common 
and sometimes justified in electron diffraction calcula- 
tions, where n-beam interactions may involve very 
large numbers of reflections. In X-ray dynamical cal- 
culations they are clearly unjustified, at least in the 
three-beam case which we cited. To illustrate the cor- 
responding effect in our four-beam case, we have cal- 
culated values of the absorption coefficients and the 
excitations of modes, for the exact n-beam point, both 
for an 'artificial' three-beam case from which the 3 ] ]  
contributions were omitted, and for one involving all 
four beams. These are listed in Table 5, from which it 
should be evident that the omission of the contribu- 
tions of weak (two-beam) reflections from n-beam cal- 
culations may lead to serious errors in the calculated 
results. 

V.  E x p e r i m e n t a l  resu l t s  

Photographs of the four-beam forward diffracted and 
transmitted diffracted regions of reciprocal space are 
shown in Figs. 7 and 8. The specimen was an essen- 
tially perfect [121] cut germanium wafer about 0.5 
mm thick. 

In interpreting these photographs it is necessary to 
take into account the divergent and polychromatic na- 
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Fig. 6. Transmitted intensities, calculated. (F.D. ='forward diffracted'; T.R. ='transmitted reflected'). 
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Fig. 7. Forward diffracted beams, experimental. 
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Table 5. Effects of  omission of a weak reflection 
from four-beam calculations 

Absorption coefficients 
(cm- 1) (at n-beam p o i n t )  Excitations (~) 

Modes Four beams 'Three beams' Four beams 'Three beams' 
1 6.2 20 12.5 28.6 
2 37 77 12.5 28-5 
3 25 132 12.5 1-1 
4 133 234 12-5 2.4 
5 177 776 12.5 20.5 
6 324 875 12-5 18.8 
7 1000 12.5 
8 1115 12.5 

ture of the incident Cu K beam. The divergence is 
approximately 4 ° in all directions. All wavelengths 
which satisfy the diffraction conditions for the 'n' re- 
flections contribute to the recorded intensities. The 
diffraction lines recorded on the photographs are actu- 
ally small, curved portions of Kossel conic sections, 
greatly magnified by the large specimen to film dis- 
tance. 

V(a) Forward diffracted beams (Fig. 7) 
Four-beam points lie at the intersections of the dif- 

fraction lines due to all the radiations, continuous as 
well as characteristic, which are simultaneously dif- 
fracted by (202), (171) and (3il). The most intense lines_ 
are due to diffraction of Cu Kal  and Ka2 by (202) 
and (171). Near their intersections a faint 'extinction' 
line may be observed along the direction perpendic- 
ular to the 311 line. It is shown enlarged in Fig. 7. 
The extinction line corresponds to the sharp dips in 
the 202 and l i l  transmitted intensities near the four- 
beam point; the dips affect all diffracted wavelengths" 
hence the extinction line. On the original films the 
extinction could be easily seen at the Cu Kfl intersec- 
tion as well. 

V(b) Transmitted reflected beams 
The effects of the four-beam interaction on the three 

transmitted reflection lines are shown in Fig. 8. A 
sharp discontinuity in the 202 Kal  and t~ 2 lines (indi- 
cated by arrows) is clearly visible; it corresponds to 
the intensity dip shown along 202 in Fig. 6. A very 
slight enhancement of the 202 diffraction lines is detec- 
table (with some effort) immediately adjacent to the 
discontinuities. The 171 photograph shows consider- 
able enhancement of the transmitted beam adjacent to 
and partly overlapping a discontinuity in the diffrac- 
tion line. The intensity of the 311 reflection is even more 
strongly enhanced at the four-beam point, but there 
is no evidence of any intensity discontinuity or de- 
crease nearby. 

A faint line may be observed perpendicular to 311 
connecting the K~I and (x 2 lines with the Kfl line. Dif- 
fraction of the continuum of non-characteristic wave- 
lengths by (31-]) cannot lead to the appearance of re- 
flection 'lines' on photographs. Such two-beam diffrac- 
tion contributes only to t he  general background. At 

the four-beam points for these wavelengths, however, 
the transmitted intensities are greatly enhanced, giving 
rise to the line under discussion. 

Agreement between the calculated results shown in 
Fig. 6 and those recorded photographically is generally 
satisfactory. All the intensity anomalies displayed in 
Fig. 6 are observed with approximately the indicated 
magnitudes. Even the slight deviation of the extinc- 
tion line from the exact four-beam crossover point, 
which is indicated by the locations of the intensity 
dips on the 171 and 202 charts (Fig. 6), is clearly visible 
on Fig. 7. 

It is evident that classical dynamical diffraction 
theory can serve as the basis for reasonably accurate 
calculations of four-beam diffraction effects. 
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